
RTOS services —Part I

Kizito NKURIKIYEYEZU, Ph.D.

Readings

Read Chap 6 of Simon, D. E.
(1999). An Embedded
Software Primer
Topics

RTOS fundamentals
Tasks
Semaphores
Priority inversion

1Readings are based on Simon, D. E. (1999). An Embedded Software Primer.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 1 / 51

Tasks and Task States
Task—a subroutine in RTOS
Embedded software application makes calls to the RTOS functions to start
tasks, passing to the OS, start address, stack pointers, etc. of the tasks
Task states

1 Running—A task is running when it is actively being executed by a processor,
and hence, makes progress. The number of tasks in the running state cannot
exceed the total number of processors available in the system.

2 Ready—A task is in the ready state when it is eligible for execution but no
processors are currently available to execute it, because all of them are busy with
other activities. A task does not make any progress when it is ready

3 Blocked—has nothing for microprocessor, waiting for external event, e.g. network
data handler with no data from network, button response task with button not yet
pressed. Blocked task can no longer compete with other tasks for execution

4 Suspended—Task go into a suspended state either voluntarily or due to the
initiative of another task. They can return to the ready state only when another
task explicitly resumes them.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 2 / 51

Tasks and Task States
Task—a subroutine in RTOS
Embedded software application makes calls to the RTOS functions to start
tasks, passing to the OS, start address, stack pointers, etc. of the tasks
Task states

1 Running—A task is running when it is actively being executed by a processor,
and hence, makes progress. The number of tasks in the running state cannot
exceed the total number of processors available in the system.

2 Ready—A task is in the ready state when it is eligible for execution but no
processors are currently available to execute it, because all of them are busy with
other activities. A task does not make any progress when it is ready

3 Blocked—has nothing for microprocessor, waiting for external event, e.g. network
data handler with no data from network, button response task with button not yet
pressed. Blocked task can no longer compete with other tasks for execution

4 Suspended—Task go into a suspended state either voluntarily or due to the
initiative of another task. They can return to the ready state only when another
task explicitly resumes them.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 2 / 51

Tasks and Task States
Task—a subroutine in RTOS
Embedded software application makes calls to the RTOS functions to start
tasks, passing to the OS, start address, stack pointers, etc. of the tasks
Task states

1 Running—A task is running when it is actively being executed by a processor,
and hence, makes progress. The number of tasks in the running state cannot
exceed the total number of processors available in the system.

2 Ready—A task is in the ready state when it is eligible for execution but no
processors are currently available to execute it, because all of them are busy with
other activities. A task does not make any progress when it is ready

3 Blocked—has nothing for microprocessor, waiting for external event, e.g. network
data handler with no data from network, button response task with button not yet
pressed. Blocked task can no longer compete with other tasks for execution

4 Suspended—Task go into a suspended state either voluntarily or due to the
initiative of another task. They can return to the ready state only when another
task explicitly resumes them.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 2 / 51

Tasks and Task States
Task—a subroutine in RTOS
Embedded software application makes calls to the RTOS functions to start
tasks, passing to the OS, start address, stack pointers, etc. of the tasks
Task states

1 Running—A task is running when it is actively being executed by a processor,
and hence, makes progress. The number of tasks in the running state cannot
exceed the total number of processors available in the system.

2 Ready—A task is in the ready state when it is eligible for execution but no
processors are currently available to execute it, because all of them are busy with
other activities. A task does not make any progress when it is ready

3 Blocked—has nothing for microprocessor, waiting for external event, e.g. network
data handler with no data from network, button response task with button not yet
pressed. Blocked task can no longer compete with other tasks for execution

4 Suspended—Task go into a suspended state either voluntarily or due to the
initiative of another task. They can return to the ready state only when another
task explicitly resumes them.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 2 / 51

FIG 1. Task states transition in FreeRTOS1

1https://www.freertos.org/RTOS-task-states.html
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 3 / 51

https://www.freertos.org/RTOS-task-states.html

FIG 2. Task state diagram in the FreeRTOS operating system.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 4 / 51

Task-based scheduling
The scheduler keeps track of the states of each task
It also decides which task should run
Based on priorities

priorities set by user
non-blocked task with highest priority runs

How does a scheduler know when a task has become blocked or
unblocked?—The RTOS provides API for events to wait for or signal events
that occurred
What happen if all tasks are blocked —the scheduler will wait for something to
happen. If nothing happen, it usually the programmer’s fault (or the software is
supposed to wait that long?!)
What if two tasks of the same priories are ready?—depends on the RTOS and
how it implements this behavior
FreeRTOS store a full copy of the processor state in a data structure, known as
Task Control Block also known as the TCB (see Fig. 3).

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 5 / 51

FIG 3. Main task control block components in FreeRTOS

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 6 / 51

1 typedef struct tskTaskControlBlock{
2 /*The location of the last item placed on the stack */
3 volatile StackType_t * pxTopOfStack;
4 /*The list that the state (Ready, Blocked, Suspended). */
5 ListItem_t xStateListItem;
6 /*Used to reference a task from an event list. */
7 ListItem_t xEventListItem;
8 /*The priority of the task. 0 is the lowest priority. */
9 UBaseType_t uxPriority;

10 /*Points to the start of the stack. */
11 StackType_t * pxStack;
12 /*Descriptive name given to the task to facilitates debugging*/
13 char pcTaskName[configMAX_TASK_NAME_LEN];
14 } tskTCB;

LISTING 1: Excerpt of the FreeRTOS task control block

2see details at https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 7 / 51

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c

Task-based scheduling
The TCB contains a full copy of the processor state2 to allow the OS to switch
from one task to another

Context switch—the OS saves the processor state of the previous task into its
TCB and then restoring the processor state of the next task
Program counter —points to the next instruction that the processor will execute,
within the task’s program code
Stack pointer—locates the boundary between full and empty elements in the task
stack

The data and program memory allocation information keep a record of the
memory areas currently assigned to the task.
The task state and attributes are used by the operating system to schedule
tasks in an orderly way and support inter-task synchronization and
communication.
Resource allocation state hold which resources (e.g., hardware devices
connected to the system) that may need to be released open exit

2This is not entirely true. Some OS store part or all of the processor state elsewhere, for instance in
the task stack, and then make it accessible from the TCB through a pointer.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 8 / 51

Task-based scheduling
Deleted tasks —immediately ceases execution but its TCB is not immediately
removed from the system. Instead, the task goes into the waiting termination
state until the OS completes the cleanup operation3

Task scheduling —the OS decides which task to move in the running state
whenever a processor is available for use.
The transition from the running to the blocked state is always under the control
of the affected task and when specific event eventually occurs, the waiting task
is returned to the ready state
When a task is resumed, it unconditionally goes from the suspended state into
the ready state. This happens regardless of which state it was in before being
suspended.

3In FreeRTOS, this is done by the idle task—which is executed when the system is otherwise idle.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 9 / 51

Example—Underground tank monitoring
The underground tank monitoring system monitors up to eight underground
tanks by reading thermometers and the levels of floats installed in those tanks.
To read the floats level in one of the tanks, the microprocessors must send a
command to the hardware to tell it which tank to read from.
When the hardware has obtained a new float reading a few milliseconds letter,
it interrupt; the microprocessor can read the the level from the hardware at any
time later.
In the code Listing 3 below:

vLevelTask compute gasoline in the tank. It is time consuming but has low priority

vButtonTask is short and has higher priority
if a user pressess a button, the RTOS block the vLevelTask task and run the high
priority vButtonTask task.
When the vButtonTask task is finished, the RTOS will unblock the vLevelsTask
task and run it again.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 10 / 51

Example—Underground tank monitoring
The underground tank monitoring system monitors up to eight underground
tanks by reading thermometers and the levels of floats installed in those tanks.
To read the floats level in one of the tanks, the microprocessors must send a
command to the hardware to tell it which tank to read from.
When the hardware has obtained a new float reading a few milliseconds letter,
it interrupt; the microprocessor can read the the level from the hardware at any
time later.
In the code Listing 3 below:

vLevelTask compute gasoline in the tank. It is time consuming but has low priority
vButtonTask is short and has higher priority

if a user pressess a button, the RTOS block the vLevelTask task and run the high
priority vButtonTask task.
When the vButtonTask task is finished, the RTOS will unblock the vLevelsTask
task and run it again.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 10 / 51

Example—Underground tank monitoring
The underground tank monitoring system monitors up to eight underground
tanks by reading thermometers and the levels of floats installed in those tanks.
To read the floats level in one of the tanks, the microprocessors must send a
command to the hardware to tell it which tank to read from.
When the hardware has obtained a new float reading a few milliseconds letter,
it interrupt; the microprocessor can read the the level from the hardware at any
time later.
In the code Listing 3 below:

vLevelTask compute gasoline in the tank. It is time consuming but has low priority
vButtonTask is short and has higher priority
if a user pressess a button, the RTOS block the vLevelTask task and run the high
priority vButtonTask task.

When the vButtonTask task is finished, the RTOS will unblock the vLevelsTask
task and run it again.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 10 / 51

Example—Underground tank monitoring
The underground tank monitoring system monitors up to eight underground
tanks by reading thermometers and the levels of floats installed in those tanks.
To read the floats level in one of the tanks, the microprocessors must send a
command to the hardware to tell it which tank to read from.
When the hardware has obtained a new float reading a few milliseconds letter,
it interrupt; the microprocessor can read the the level from the hardware at any
time later.
In the code Listing 3 below:

vLevelTask compute gasoline in the tank. It is time consuming but has low priority
vButtonTask is short and has higher priority
if a user pressess a button, the RTOS block the vLevelTask task and run the high
priority vButtonTask task.
When the vButtonTask task is finished, the RTOS will unblock the vLevelsTask
task and run it again.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 10 / 51

Scheduler
Can a task go from ready to blocked state? —No

A task goes to blocked state only when it decides for ITSELF if it needs to wait for
something or has nothing to do.
To make this decision, it needs to execute some code, thus it is “running” before
“blocked”!

Can a blocked task wake up on its own ?—No
A blocked task will have something for microprocessor to do only if some OTHER
task interrupts it and tells it that whatever it was waiting for has happened!
Otherwise, the task will be blocked forever.

Can a task switch from ready to running or vice-versa on its own? —No
Scheduler does all the switching between ready and running states.
A blocked task can move to ready, and immediately switch to running (if it has the
highest priority).

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 11 / 51

Scheduler
Can a task go from ready to blocked state? —No

A task goes to blocked state only when it decides for ITSELF if it needs to wait for
something or has nothing to do.
To make this decision, it needs to execute some code, thus it is “running” before
“blocked”!

Can a blocked task wake up on its own ?—No
A blocked task will have something for microprocessor to do only if some OTHER
task interrupts it and tells it that whatever it was waiting for has happened!
Otherwise, the task will be blocked forever.

Can a task switch from ready to running or vice-versa on its own? —No
Scheduler does all the switching between ready and running states.
A blocked task can move to ready, and immediately switch to running (if it has the
highest priority).

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 11 / 51

Scheduler
Can a task go from ready to blocked state? —No

A task goes to blocked state only when it decides for ITSELF if it needs to wait for
something or has nothing to do.
To make this decision, it needs to execute some code, thus it is “running” before
“blocked”!

Can a blocked task wake up on its own ?—No
A blocked task will have something for microprocessor to do only if some OTHER
task interrupts it and tells it that whatever it was waiting for has happened!
Otherwise, the task will be blocked forever.

Can a task switch from ready to running or vice-versa on its own? —No
Scheduler does all the switching between ready and running states.
A blocked task can move to ready, and immediately switch to running (if it has the
highest priority).

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 11 / 51

Example—Underground tank monitoring
Two tasks can be written independently of one another.
The programmers does not need to work much how fast the task will respond.
Code in Listing 2 ensures that the RTOS knows which tasks are available and
how they should be prioritized.

1

2 void main(void){
3 // Initialize (but do not start) the RTOS
4 RTOS_Init();
5 // Tell the RTOS about the tasks
6 StartTask(vButtonTask, PRIORITY_HIGH);
7 StartTask(vLevelsTask, PRIORITY_LOW);
8 //Start the RTOS (This function never returns)
9 RTOS_Run();

10 }

LISTING 2: Main program for an underground tank monitoring

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 12 / 51

Example—Underground tank monitoring
1 // High priority task
2 void vButtonTask(void){
3 while(true){
4 //Block until the user presses a button
5 // Quick: Respond to the user pressing the button
6 }
7 }
8 // Low priority task
9 void vLevelTask(void){

10 while(true){
11 // Read the level of floats in tank
12 // Calculate average float level
13 // Do some interminable calculations
14 // Figure out which tank to do next
15 }
16 }

LISTING 3: Tasks for an underground tank monitoring
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 13 / 51

Example—Underground tank monitoring

FIG 4. Tasks for an underground tank monitoring

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 14 / 51

Tasks and Data
Each task has its own private context.

the register values,
a program counter,
a stack

All other data is shared among all of the tasks in the system
Global
static variables
uninitialized and initialized variables
extern data types

Shared data caused the shared-data problem4 —use of “Reentrancy”
characterization of functions to solve this

4The shared data problem occurs when several functions (or ISRs or tasks) share a variable. Shared
data problem can arise in a system when another higher priority task finishes an operation and
modifies the data or a variable before the completion of previous task operations.. See details at
https://automaticaddison.com/what-is-the-shared-data-problem/

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 15 / 51

https://automaticaddison.com/what-is-the-shared-data-problem/

Tasks and Data
Each task has its own private context.

the register values,
a program counter,
a stack

All other data is shared among all of the tasks in the system
Global
static variables
uninitialized and initialized variables
extern data types

Shared data caused the shared-data problem4 —use of “Reentrancy”
characterization of functions to solve this

4The shared data problem occurs when several functions (or ISRs or tasks) share a variable. Shared
data problem can arise in a system when another higher priority task finishes an operation and
modifies the data or a variable before the completion of previous task operations.. See details at
https://automaticaddison.com/what-is-the-shared-data-problem/

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 15 / 51

https://automaticaddison.com/what-is-the-shared-data-problem/

FIG 5. Data in an RTOS-based real-time system

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 16 / 51

Shared-Data Problems
the shared object where the conflict may happen is a “resource”
the parts of the code where the problem may happen are a critical sections

Critical section
critical section is a sequence of operations that cannot be interleaved with other
operations on the same resource

Two critical sections on the same resource must execute in mutual exclusion
there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation
system-wide disabling the preemption
selectively disabling the preemption (e.g., using semaphores and mutex)

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 17 / 51

Shared-Data Problems
The shared data problem occurs when several functions (or ISRs or tasks)
share a variable.
This problem can arise in a system when another higher priority task finishes
an operation and modifies the data or a variable before the completion of
previous task operations
For example, in the code in Listing 4:

What would happen if the RTOS stops vCalculateTankLvelsTask(void) task and
run vButtonTask(void) when the vCalculateTankLvelsTask(void) task was still in
the middle of computing tankData[i].timeUpdated = getCurrentTime()?

In this case, the value displayed on the LCD will be wrong because the
tankData[i].timeUpdated will contain the previous value,or worse, it might be even
corrupted data5

5You should have learned this in your previous classes. For a refresher, please read about
non-atomicity due to multiple CPU instructions and why this might corrupt data

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 18 / 51

https://preshing.com/20130618/atomic-vs-non-atomic-operations/

Shared-Data Problems
The shared data problem occurs when several functions (or ISRs or tasks)
share a variable.
This problem can arise in a system when another higher priority task finishes
an operation and modifies the data or a variable before the completion of
previous task operations
For example, in the code in Listing 4:

What would happen if the RTOS stops vCalculateTankLvelsTask(void) task and
run vButtonTask(void) when the vCalculateTankLvelsTask(void) task was still in
the middle of computing tankData[i].timeUpdated = getCurrentTime()?
In this case, the value displayed on the LCD will be wrong because the
tankData[i].timeUpdated will contain the previous value,or worse, it might be even
corrupted data5

5You should have learned this in your previous classes. For a refresher, please read about
non-atomicity due to multiple CPU instructions and why this might corrupt data

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 18 / 51

https://preshing.com/20130618/atomic-vs-non-atomic-operations/

1 struct{
2 long tankLevel, timeUpdated;
3 }tankData[MAX_TANKS];
4 void vButtonTask(void){
5 int i;
6 while(true){
7 i= getPressedButtonId();
8 updateLCD(tankData[i].tankLevel, tankData[i].timeUpdated);
9 }

10 }
11 void vCalculateTankLvelsTask(void){
12 int i;
13 while(true){
14 tankData[i].tankLevel = getCurrentTankLevel;
15 tankData[i].timeUpdated = getCurrentTime();
16 i = getNextTankId();
17 }
18 }

LISTING 4: Tasks for an underground tank monitoring

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 19 / 51

Reentrancy
Reentrant function
A function that works correctly regardless of the number of tasks that call it
between interrupts

A Reentrant function
can be called by more than one task and will always work correctly,
even if the RTOS switches from one task to another in the middle of executing the
function.

Characteristics of reentrant functions
Only access shared variable in an atomic-way, or when variable is on callee’s
stack
A reentrant function calls only reentrant functions
A reentrant function uses system hardware (shared resource) atomically

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 20 / 51

Reentrancy
Reentrant function
A function that works correctly regardless of the number of tasks that call it
between interrupts

A Reentrant function
can be called by more than one task and will always work correctly,
even if the RTOS switches from one task to another in the middle of executing the
function.

Characteristics of reentrant functions
Only access shared variable in an atomic-way, or when variable is on callee’s
stack
A reentrant function calls only reentrant functions
A reentrant function uses system hardware (shared resource) atomically

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 20 / 51

Reentrancy
Reentrant function
A function that works correctly regardless of the number of tasks that call it
between interrupts

A Reentrant function
can be called by more than one task and will always work correctly,
even if the RTOS switches from one task to another in the middle of executing the
function.

Characteristics of reentrant functions
Only access shared variable in an atomic-way, or when variable is on callee’s
stack
A reentrant function calls only reentrant functions
A reentrant function uses system hardware (shared resource) atomically

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 20 / 51

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless

they are stored on stack of the calling task, or
they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or

they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or
they are private variables of the task

does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or
they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or
they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions

3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

How to check reentrancy?
Apply the following three 3 rules to check if a function is reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or
they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the interrupt may change

certain global values and resuming the course of action of the reentrant function with the new data
may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 21 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

Example —non-reentrant function
In Listing 5 Both fun1() and fun2() are not reentrant

fun1() is NOT reentrant because it uses global variable i
fun2() is NOT reentrant because it calls a non-reentrant function

1 int i;
2 int fun1(){
3 return i * 5;
4 }
5 int fun2(){
6 return fun1() * 5;
7 }

LISTING 5: Example non-reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 22 / 51

Example —reentrant function
In Listing 6, both fun1() and fun2() are reentrant

1 int fun1(int i){
2 return i * 5;
3 }
4 int fun2(int i){
5 return fun1(i) * 5;
6 }

LISTING 6: Example of reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 23 / 51

Example —non-reentrant function
Is the code in Listing 7 reentrant?

1 bool error_flag = false;
2 void update_display(int j){
3 if (!error_flag){
4 printf("\n Value: %d", j);
5 j=0
6 error_flag = true;
7 }
8 else{
9 printf("\n Could not update the display");

10 error_flag = false;
11 }
12 }

LISTING 7: Example of reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 24 / 51

Example —non-reentrant function
The code in Listing 7 is not reentrant:

non-atomic use of fError
the printf() function may benon-reentrant10

10The C standard explicitly states that the functions in the standard library are not guaranteed to be
reentrant and may modify objects with static storage duration. Thus, a signal handler cannot, in
general, call standard library functions.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 25 / 51

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1364.htm

Reentrancy—some considerations
Is the code in Listing 8 reentrant?

The function modifies a nonstack variable —thus, it should be non-reentrant.
However, this may or may not be the case
Maybe! Depends on microprocessor and compiler

1 static int errors;
2 void update_errors(void){
3 ++errors;
4 }

LISTING 8: Is this code reentrant?

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 26 / 51

Reentrancy—some considerations
For AVR microcontrollers, the code would not be reentrant
The compiler implemented the increment using three (load, increment, and
store) machine instructions. —Thus, this operation is not atomic.

1 update_errors:
2 push r28
3 push r29
4 in r28,__SP_L__
5 in r29,__SP_H__
6 lds r24,errors
7 lds r25,errors+1
8 adiw r24,1
9 sts errors+1,r25

10 sts errors,r24
11 ret

LISTING 9: Assembly using AVR GCC

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 27 / 51

Reentrancy—some considerations
For an Intel 8086 architecture, the code would be reentrant 11

The inc instruction increases by 1 the value of a variable. It is atomic in this
case12.

1 _errors:
2 .proc _update_errors: near
3 inc _errors
4 ret

LISTING 10: Assembly for 80x86 CPU

11The Intel 8086 is a 16-bit microprocessor chip designed by Intel in the late 1970s
https://en.wikipedia.org/wiki/Intel_8086

12In other CPU architecture, increment is usually three operations: Load, Increment, then Store.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 28 / 51

https://en.wikipedia.org/wiki/Intel_8086

Race conditions
Race condition is an issue that hinders program correctness when two or more
tasks are allowed uncontrolled access to some shared variables or, more generally,
a shared resource

Race condition zones appear only as a consequence of task splittingand, even
in that case, their location in the schedule is well known in advance.
In RTOS-based application, predicting race condition is hard to predict
because the task switching points are nowchosen autonomously by the OS
scheduler instead of being hard-coded in the code.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 29 / 51

Semaphores and shared data

Semaphores
Semaphore was proposed by Edsger W. Dijkstra13 in 1965 which is a very
significant technique to manage concurrent processes by using a simple
integer value, which is known as a semaphore.
Semaphore14—a flag that is used to control access to shared resource
Semaphores are used to avoid shared-data problems in RTOS
In theory, a semaphore is a shared counter that can be incremented and
decremented atomically.
According to its abstract definition, a semaphore is an object that contains two
items of information

a value v—represented as a nonnegative integer
a queue of tasks q—which are waiting on the semaphore.

13https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
14https://www.guru99.com/semaphore-in-operating-system.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 30 / 51

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.guru99.com/semaphore-in-operating-system.html

FIG 6. Abstract structure of a semaphore and behavior of its primitives
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 31 / 51

1 int s =0;
2 void semaphore_init (){
3 s =0;
4 }
5 void P(){
6 if(s == 0){
7 //block any other tasks to access the semaphore
8 while(s == 0){/*Do nothing. Just spin around*/}
9 }

10 else{
11 s--;
12 }
13 }
14 void V(){
15 s++;
16 }

LISTING 11: Semaphore pseudocode

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 32 / 51

FIG 7. Task states and transitions involved in semaphore operations in FreeRTOS
Note that semaphore primitives are tied to the task state diagram because their execution may
induce the transition of a task from one state to another.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 33 / 51

If task τ enter the critical section, the
primitive P(s) will execute, and find
the initial value of s, s = 1. it will
decrement the value to s = 0, and
will be allowed to proceed into its
critical region immediately
If another task τ′tries to enter the
critical section while task τ is
executing, task τ′ will be blocked
because the current value of
semaphore s = 0

FIG 8. Usage of a semaphore and its primitives
for mutual exclusion.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 34 / 51

Mutual exclusion with semaphores
How to use a semaphore for critical sections

before entering the critical section, perform a wait

after leaving the critical section, perform a post

1 void CriticalTask(void){
2 // other code
3 ...
4 semaphore_take();
5 <critical section>
6 semaphore_release()
7 ...
8 // other code
9 }

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 35 / 51

Mutual exclusion with semaphores
How to use a semaphore for critical sections

before entering the critical section, perform a wait
after leaving the critical section, perform a post

1 void CriticalTask(void){
2 // other code
3 ...
4 semaphore_take();
5 <critical section>
6 semaphore_release()
7 ...
8 // other code
9 }

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 35 / 51

Example—Underground tank monitoring
1 struct{
2 long tankLevel, timeUpdated;
3 }tankData[MAX_TANKS];
4

5 void vCalculateTankLvelsTask(void){
6 int i;
7 while(true){
8 TakeSemaphore();
9 tankData[i].tankLevel = getCurrentTankLevel;

10 tankData[i].timeUpdated = getCurrentTime();
11 ReleaseSemaphore();
12 i = getNextTankId();
13 }
14 }

LISTING 12: Solving the underground tank monitoring problem with semaphores

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 36 / 51

Example—Underground tank monitoring
If the user presses a button while the vCalculateTankLvelsTask(void) task is still
modifying the data, and still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and moved the
vCalculateTankLvelsTask(void) task to the ready state.

When the vButtonTask(void) task tries to get the semaphore by calling
TakeSemaphore(), it will block because the semaphore is already taken by the
vCalculateTankLvelsTask(void) task.
The RTOS will then look for another task to run and will switch back to the
vCalculateTankLvelsTask(void) task since it is in the ready state.
The vCalculateTankLvelsTask(void) task will until completion, releases the
semaphore
At this point, the vButtonTask(void) task will be able to get the semaphore and
run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 37 / 51

Example—Underground tank monitoring
If the user presses a button while the vCalculateTankLvelsTask(void) task is still
modifying the data, and still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and moved the
vCalculateTankLvelsTask(void) task to the ready state.
When the vButtonTask(void) task tries to get the semaphore by calling
TakeSemaphore(), it will block because the semaphore is already taken by the
vCalculateTankLvelsTask(void) task.

The RTOS will then look for another task to run and will switch back to the
vCalculateTankLvelsTask(void) task since it is in the ready state.
The vCalculateTankLvelsTask(void) task will until completion, releases the
semaphore
At this point, the vButtonTask(void) task will be able to get the semaphore and
run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 37 / 51

Example—Underground tank monitoring
If the user presses a button while the vCalculateTankLvelsTask(void) task is still
modifying the data, and still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and moved the
vCalculateTankLvelsTask(void) task to the ready state.
When the vButtonTask(void) task tries to get the semaphore by calling
TakeSemaphore(), it will block because the semaphore is already taken by the
vCalculateTankLvelsTask(void) task.
The RTOS will then look for another task to run and will switch back to the
vCalculateTankLvelsTask(void) task since it is in the ready state.

The vCalculateTankLvelsTask(void) task will until completion, releases the
semaphore
At this point, the vButtonTask(void) task will be able to get the semaphore and
run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 37 / 51

Example—Underground tank monitoring
If the user presses a button while the vCalculateTankLvelsTask(void) task is still
modifying the data, and still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and moved the
vCalculateTankLvelsTask(void) task to the ready state.
When the vButtonTask(void) task tries to get the semaphore by calling
TakeSemaphore(), it will block because the semaphore is already taken by the
vCalculateTankLvelsTask(void) task.
The RTOS will then look for another task to run and will switch back to the
vCalculateTankLvelsTask(void) task since it is in the ready state.
The vCalculateTankLvelsTask(void) task will until completion, releases the
semaphore

At this point, the vButtonTask(void) task will be able to get the semaphore and
run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 37 / 51

Example—Underground tank monitoring
If the user presses a button while the vCalculateTankLvelsTask(void) task is still
modifying the data, and still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and moved the
vCalculateTankLvelsTask(void) task to the ready state.
When the vButtonTask(void) task tries to get the semaphore by calling
TakeSemaphore(), it will block because the semaphore is already taken by the
vCalculateTankLvelsTask(void) task.
The RTOS will then look for another task to run and will switch back to the
vCalculateTankLvelsTask(void) task since it is in the ready state.
The vCalculateTankLvelsTask(void) task will until completion, releases the
semaphore
At this point, the vButtonTask(void) task will be able to get the semaphore and
run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 37 / 51

Semaphores in FreeRTOS16

FreeRTOS provides four different semaphore implementations:
1 counting semaphores

Equivalent to the canonical definition of a semaphore
The slowest implementation
The value of s can be declared when the semaphore is declared

2 Binary semaphores
Their value can only be either one or zero, but they can still be used for either
mutual exclusion or task synchronization.
Faster than the one of counting semaphores.

3 Mutex semaphores
they must only be used as mutual exclusion semaphores, i.e., the P(s) and V(s)
primitives on a mutex semaphore s must always appear in pairs and must be
placed as brackets around critical regions.
cannot be used for task synchronization

4 Recursive mutex semaphores15
15https://www.freertos.org/RTOS-Recursive-Mutexes.html
16https://www.freertos.org/a00113.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 38 / 51

https://www.freertos.org/RTOS-Recursive-Mutexes.html
https://www.freertos.org/a00113.html

Binary semaphore

A binary semaphore —only one task
can have the semaphore at a time.
Two functions to control the
semaphore:

1 TakeSemaphore()
block until the semaphore is
released
take the semaphore

2 ReleaseSemaphore()—release a
taken semaphore

FIG 9. Concept of a semaphore

Working principle—principle: if one task has called the TakeSemaphore() function,
and has not yet called ReleaseSemaphore()function to release it, then any other
task that calls TakeSemaphore() function will be blocked until the first task calls the
ReleaseSemaphore() function.

14https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 39 / 51

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7

Binary semaphore

A binary semaphore —only one task
can have the semaphore at a time.
Two functions to control the
semaphore:

1 TakeSemaphore()
block until the semaphore is
released
take the semaphore

2 ReleaseSemaphore()—release a
taken semaphore

FIG 9. Concept of a semaphore

Working principle—principle: if one task has called the TakeSemaphore() function,
and has not yet called ReleaseSemaphore()function to release it, then any other
task that calls TakeSemaphore() function will be blocked until the first task calls the
ReleaseSemaphore() function.

14https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 39 / 51

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7

Semaphores in FreeRTOS
The four kinds of semaphore are created using functions listed in Table 117.

TAB 1. Semaphore creation and deletion primitives of FreeRTOS

If semaphore the creation fails (e.g., no heap memory available), the function
returns a NULL pointer as shown in Listing 13.

17Detailed info on variation semaphores API is found at https://www.freertos.org/a00113.html
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 40 / 51

https://www.freertos.org/a00113.html

1 SemaphoreHandle_t xSemaphore;
2 void vSemaphoreExampleTask(void * pvParameters){
3 /* Attempt to create a semaphore. */
4 xSemaphore = xSemaphoreCreateBinary();
5 if(xSemaphore == NULL)
6 {
7 /* There was insufficient FreeRTOS heap available for the

semaphore to be created successfully. */
8 }
9 else

10 {
11 /* The semaphore can now be used and its handle is stored

in the xSemahore variable. Note that calling
xSemaphoreTake() on the semaphore here will fail until
the semaphore has first been given. */

12 }
13 }

LISTING 13: Binary semaphore creation

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 41 / 51

Semaphore manipulation in FreeRTOS
Once created, a semaphore can be manipulated with function listed

TAB 2. Semaphore Manipulation Primitives of FreeRTOS

Except the mutual exclusion semaphores, most semaphores are acted upon
by means of the functions xSemaphoreTake () and xSemaphoreGive(), the
FreeRTOS counterpart of P() and V(), respectively

1 BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,
TickType_t xBlockTime);

2 BaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 42 / 51

Remarks
The FreeRTOS implementation of semaphores is slightly different from the
canonical algorithms:

The canonical algorithm block the caller for an unlimited amount of time. This
is not reasonable for a RT system. Thus, the function xSemaphoreTake() has a
second argument, xBlockTime that specifies the maximum blocking time:

if xBlockTime==portMAX_DELAY, the function blocks the caller until the
semaphore operation is complete, i.e., it behaves like the canonical algorithm.
If xBlockTime==0, the function returns an error indication to the caller when the
operation cannot be performed immediately.
Any other value is interpreted as the maximum amount of time the function will
possibly block the caller, expressed as an integral number of clock ticks.

Canonical algorithm is assumed to never fail. However, in the real-world, things
go wrong. For this reason, the return value of xSemaphoreTake() and
xSemaphoreGive() is a status code, which is pdTRUE if the operation was
successful. Otherwise, it returns pdFALSE

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 43 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place

The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application

Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed

Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion

Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will

SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Potential issues in using semaphores
The initial values of semaphores – when not set properly or at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting tasks—deadline to be
missed
Priorities could be inverted and usually solved by priority inheritance/promotion
Semaphore work only if you use them perfectly—and there is no guarantees
that you will
SUMMARY—Using semaphore is a bug waiting to happen. Use them
sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 44 / 51

Priority inversion

FIG 10. Shortcoming of lock-based synchronization when a task halts.
If task τb is delayed while it is within its critical region, τa and any other tasks willing to enter a
critical region associated with the same lock will be blocked and possibly be unable to make any
further progress. Even though τb proceeds normally, if the priority of τais higher than the priority of
τb, the way mutual exclusion is implemented goes against the concept of task priority, because a
higher-priority task is forced to wait until a lower-priority task has completed part of its activities.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 45 / 51

Priority inversion —Principle
Priority inversion is a bug that occurs when a high priority task is indirectly
preempted by a low priority task.

For example, the low priority task holds a mutex that the high priority task must
wait for to continue executing18.
In this case, the high priority task (Task H) would be blocked as long as the low
priority task (Task L) held the lock.
This is known as bounded priority inversion as the length of time of the
inversion is bounded by however long the low priority task is in the critical
section (holding the lock)19.
Unbounded priority inversion occurs when a medium priority task (Task M)
interrupts Task L while it holds the lock. It’s called “unbounded” because Task
M can now effectively block Task H for any amount of time, as Task M is
preempting Task L —which still holds the lock

18We will talk about mutex later. An interested reader can read a few discussion Stackoverflow
19https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/

abf4b8f7cd4a4c70bece35678d178321
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 46 / 51

https://stackoverflow.com/q/34524
https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/abf4b8f7cd4a4c70bece35678d178321
https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/abf4b8f7cd4a4c70bece35678d178321

FIG 11. Priority Inversion —Task A has the highest priority, Task B a medium priority and Task C the
lowest priority. Priority inversion happen when the RTOS switches from a low-priority task to a
medium priority after the lowest priority task has taken a semaphore. If the high priority task wants
the semaphore, it will have to wait until the medium task blocks. The lowest priority cannot release
the semaphore since it is blocked; thus, holds up the highest priority indefinitely

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 47 / 51

Bounded priority inversion

FIG 12. Bounded priority inversion
the high priority task is blocked as long as the low priority task holds the lock

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 48 / 51

Unbounded priority inversion

FIG 13. Unbounded priority inversion
Unbounded priority inversion occurs when a medium priority task interrupts a high priority task while
it holds the lock

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 49 / 51

Priority inversion —trivia

Priority inversion nearly ended the
Mars Pathfinder mission in 1997
After deploying the rover, the lander
would randomly reset every few days
due to an intermittent priority
inversion bug that caused the
watchdog timer to trigger a full
system restart.
NASA eventually found the bug and
sent an update patch to the lander.

FIG 14. Mars Pathfinder landed a base station
with a roving probe on Mars in 1997. Priority
inversion nearly ended the Mars Pathfinder
mission in 1997

17What really happened on Mars Rover Pathfinder?
18Mutexes and Semaphores DemystifiedKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 50 / 51

http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
https://barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore

Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Using semaphores
Most targeted
Response times of interrupts and non data-sharing tasks are unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 51 / 51

Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Using semaphores
Most targeted
Response times of interrupts and non data-sharing tasks are unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 51 / 51

Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Using semaphores
Most targeted
Response times of interrupts and non data-sharing tasks are unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 8, 2022 51 / 51

The end

	Semaphores and shared data
	Priority inversion
	The end

